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Abstract

We analyze the multiple-quantum dynamics governed by a new homonuclear recoupling strategy effecting an average dipolar
Hamiltonian comprising three-spin triple-quantum operators (e.g., Sþ

p S
þ
q S

þ
r ) under magic-angle spinning conditions. Analytical

expressions are presented for polarization transfer processes in systems of three and four coupled spins-1/2 subject to triple-quantum
filtration (3QF), and high-order multiple-quantum excitation is investigated numerically in moderately large clusters, comprising up
to seven spins. This recoupling approach gives highly efficient excitation of triple-quantum coherences: ideally, up to 67% of the
initial polarization may be recovered by 3QF in three-spin systems in polycrystalline powders. Two homonuclear 2D correlation
strategies are demonstrated experimentally on powders of uniformly 13C-labeled alanine and tyrosine: the first correlates the sin-
gle-quantum spectrum in the first dimension with the corresponding 3QF spectrum along the other. The second protocol correlates
triple-quantum coherences with their corresponding single-quantum coherences within triplets of coupled spins.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple-quantum coherences (MQC) have found
widespread use in solid state NMR for spectral editing
purposes and for probing molecular structure, such as
measuring internuclear distances and molecular torsion
angles [1–3]. MQC may only develop in systems of
coupled spins, where in this work we consider the
through-space dipolar interaction. Creating MQC re-
quires application of radio-frequency (RF) pulse se-
quences effecting suitable effective Hamiltonians.
Hitherto, the most exploited pulse schemes in static sol-
ids effect either two-spin 1Q dipolar Hamiltonians [4]
comprising operators of the type Sþ

p Sqz, or 2Q operators
1090-7807/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2004.12.008

* Corresponding author. Fax: +46 8 152187.
E-mail address: mattias@physc.su.se (M. Edén).
of the form Sþ
p S

þ
q [5–8]. Such sequences will be referred

to as providing 1Q and 2Q recoupling, respectively. As
the highest excitable coherence order in a spin cluster
equals the number of coupled spins-1/2 therein, tech-
niques for optimal excitation of MQC have been devel-
oped in static solids for determining cluster sizes and
their topologies. Consequently, the MQC dynamics
resulting from 1Q or 2Q effective dipolar Hamiltonians
have received considerable attention by theoretical,
numerical, and experimental studies [1,4–14].

However, as the dipolar interactions are averaged out
by magic-angle spinning (MAS), high-resolution solid
state NMR requires rotor-synchronized recoupling se-
quences to provide dipolar Hamiltonians involving mul-
tiple-quantum operators. To date, many 2Q recoupling
techniques exist [15]. Unfortunately, the generation of
MQC in powders under MAS conditions is much less
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efficient than in static samples, in particular for coher-
ence orders higher than two. As a result, the excitation
of high-order coherences have found comparatively little
attention in MAS NMR. Nevertheless, 3QC have been
useful for spin counting [16] and estimating peptide tor-
sion angles [17] and dynamic order parameters in elasto-
mers [18]. Further methodological and theoretical
developments are therefore needed to remedy the diffi-
culties in high-order MQC excitation under MAS condi-
tions. As a dent towards this solution, we have recently
demonstrated a new strategy for reintroducing MAS-av-
eraged interactions in a systematic manner [19,20], based
on symmetry-based CN m

n and RN m
n pulse sequences [21]

in conjunction with average Hamiltonian theory
(AHT) [22,23]. This approach builds on concepts intro-
duced for MQC excitation in static samples [24] but dif-
fers from previous homonuclear recoupling strategies
under MAS conditions, in that the desired average
Hamiltonian arise from commutators (usually called
‘‘cross-terms’’) between operators from two spin interac-
tions. This approach is referred to as second-order recou-
pling [19,20,25]. It makes it feasible to obtain more
complex Hamiltonian terms than the one- or two-spin
operators normally encountered in the high-field spin
Hamiltonian, or any average Hamiltonian derived there-
of to lowest (i.e., first) order.

Focusing on 3Q dipolar recoupling, we have pre-
sented second-order recoupling schemes leading to
homonuclear dipolar cross-terms comprising three-spin
3Q operators (e.g., Sþ

p S
þ
q S

þ
r ) [19,20]. We have experimen-

tally demonstrated 1H [19] and 13C [20] 3QC excitation
in organic molecules. The purpose of the present article
is to analyze the dynamics generated by a 3Q Hamilto-
nian, with particular focus on the mechanism and effi-
ciency of 3QC excitation in multiple-spin systems,
polarization-transfer processes between spins subject to
a 3Q Hamiltonian, as well as the potential of obtaining
structural parameters through triple-quantum filtration
(3QF) experiments. This treatment thus parallels previ-
ous MQC analyses carried out for two-spin 1Q and
2Q Hamiltonians [4–6,8,9,12].

Two homonuclear 2D correlation strategies incorpo-
rating 3QF are demonstrated experimentally on pow-
ders of uniformly 13C-labeled alanine and tyrosine.
The first is a NOESY-type experiment [26] that corre-
lates 1QC along each spectral dimension. The second
protocol correlates triple-quantum coherences with their
corresponding single-quantum coherences within triplets
of coupled spins, and may be viewed as a 3QC analog of
the 2Q INADEQUATE experiment [27], also imple-
mented in solid state NMR [28–31]. The pulse schemes
are introduced and demonstrated on alanine in the fol-
lowing section, and results on tyrosine are discussed in
Section 9. Appendix A reviews restrictions that apply
when using second-order recoupling pulse sequences
within 2D experiments.
We outline the general strategy for generating a pure
3Q average Hamiltonian in Section 3, and demonstrate
in Sections 4–6 that its resulting 3QC dynamics may
be solved exactly in three- and four-spin systems. These
expressions give 3QF amplitudes as function of the exci-
tation interval (i.e., the duration over which recoupling
is effected), involve the dipolar couplings within the sys-
tem, and provide insight into general 3QC excitation
trends. Sections 7 and 8 present numerical AHT calcula-
tions of the buildup of 3QC and higher-order MQC in
systems of six and seven spins, initially prepared either
with longitudinal or transverse polarization.

Nevertheless, our analysis is somewhat pragmatic; de-
spite that in some cases it is possible to effect such ideal 3Q
average Hamiltonians using supercycled pulse sequences
[20], in general, the MQC dynamics of the sequences con-
sidered here is governed by a mixture of three-spin 3Q
and zero-quantum (ZQ) Hamiltonian terms, leading to
less tractable spin dynamics, that are generally not exactly
solvable. The combined effects of 3Q and ZQ average
Hamiltonians were briefly considered by numerical simu-
lations of three-spin systems in [20], and will be discussed
further here within the framework of 2D correlation spec-
troscopy in multiple-spin systems.
2. Pulse schemes

2.1. 3Q dipolar recoupling sequences

We focus particularly on the 3Q recoupling scheme
ðR1873Þ3

1 that belong to the class of symmetry-based

3Q phase-cycles, denoted ðRN m
nÞ3

1 [19,20]. Such a se-
quence is formed from an RN m

n cycle [21,32,33], in turn
constructed from a composite p-pulse element R. In this
work we employ the windowed element [20,34]

RðbÞ ¼ fb0 � sw � p0 � sw � bpg: ð1Þ
The flip angle b of the pulse element should typically be
b � 55� for optimal 3Q recoupling [20]. sw represents a
‘‘window’’ during which the RF-field is turned off, and
timed such that N concatenated elements of duration
sR = nsr/N extend over exactly n rotational periods
sr = 2p/xr, where xr is the MAS frequency. As ex-
plained in [20,34], the performance of the RN m

n sequence
is optimized when the fraction of the pulses relative the
total duration of sR is minimized (and hence the fraction
of the windows is maximized); this is specified by the
pulse fraction fp

fp ¼ s�1
R

Xpulses in R

p¼1

sp: ð2Þ

The RN m
n sequences as used here are constructed by a

N/2-fold repetition of the sequence R/R
R�/R

, where
/R = pm/N represents a phase-shift [21,32,33].
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The corresponding 3Q phase-cycle ðRN m
nÞ3

1; extend-
ing over the interval T = 3nsr, is formed from the
sequence

ðRN m
nÞ3

1 � RN m
n

� �
0
RN m

n

� �
2p
3
RN m

n

� �
4p
3

ð3Þ

with the subscript denoting an overall phase-shift. The
ðR1873Þ3

1 scheme spans 9 rotational periods and may
be formulated

ðR1873Þ3
1 � R70R�70ð Þ9 R190R50ð Þ9 R310R170ð Þ9; ð4Þ

where the superscript (. . .)9 implies nine repetitions of
the pulse sequence within parenthesis, with the sub-
scripted phase-shift specified in degrees.

If ðR1873Þ3
1 is applied to an ensemble of systems com-

prising at least three coupled spins at thermal equilib-
rium in a strong magnetic field, longitudinal
polarization is converted into 3QC. This may be used
in a triple-quantum filtration (3QF) experiment to select
only spin triplets that may enter a 3QC spin ensemble
state. Fig. 1A shows such an experimental pulse scheme,
where it is assumed that the recoupled spin species S
Fig. 1. Various pulse schemes incorporating triple-quantum filtration
(3QF) using the 3Q recoupling sequence ðR1873Þ3

1. (A) The prototype
version, resulting in a 3QF S-spin spectrum; initially employing
polarization transfer from abundant I-spins, followed by 3QC excita-
tion with ðR1873Þ3

1 (light shaded S RF-channel blocks). The coherences
are converted into longitudinal polarization by applying another
sequence of ðR1873Þ3

1 (dark shading), with a phase-shift Urec according
to Eq. (5). (B) 3QF 1Q–1Q 2D correlation experiment. (C) 3Q–1Q 2D
correlation experiment. All narrow rectangles represent p/2 pulses. The
exploited coherence transfer pathway is indicated beneath each
sequence (B and C).
(e.g., 13C) are surrounded by a network of abundant
spins I (e.g., 1H). The experiment starts by heteronuclear
polarization transfer to the S spins by cross-polarization
from the I spins, whereupon the latter is decoupled
throughout the reminder of the experiment, for example
using TPPM [35]. 3QC excitation is subsequently carried
out by application of qexc phase-shifted R1873 units of the
ðR1873Þ3

1 3Q phase-cycle, giving the 3QC excitation
interval sexc = 3qexcsr. The 3QC are converted back into
observable 1QC by another ðR1873Þ3

1 segment of dura-
tion srec = 3qrecsr, followed by a p/2 read pulse and sig-
nal acquisition. Note that it is not necessary to use
qexc = qrec [31,36]. The reconversion block has an overall
phase shift

Urec ¼ U0
rec þ U3QF; ð5Þ

where U0
rec is an odd integer multiple of p/3 (in our

implementations equal to p) and U3QF is cycled in six
steps to select solely the coherence transfer pathways
±3 fi 0 [37].

2.2. 2D homonuclear correlation protocols

The 3QF experiment may be modified to build 2D
homonuclear correlation schemes. Two such versions
are shown in Figs. 1B and C.

In Fig. 1B, the evolution interval ‘‘t1’’ is inserted prior
to the 3QF stage, resulting in a 3QF 2D correlation
experiment utilizing the 3Q recoupling sequence as a
mixing period. First, each spin is evolving under its
chemical shift during t1. The single-quantum coherences
are converted into z-polarization, which is subsequently
filtered through 3QC, resulting in polarization transfer
within triads of coupled spins. Hence, the resulting 2D
spectrum reveals spin connectivities. This experiment is
analogous to previously introduced approaches relying
on a 2Q recoupling Hamiltonian [28,38], with the main
distinction that the current 3QF version allows direct
(as opposed to ‘‘relayed’’ [37], henceforth called ‘‘indi-
rect’’ [31]) through-space polarization transfers between
spins separated by one as well as two bonds. This is evi-
denced by the 3QF 1Q–1Q correlation 13C spectrum
from a polycrystalline sample of [13C3]alanine (Fig. 2);
cross-peaks appear between the C–Ca as well as C–Cb

pairs of spins. However, spin–spin correlations are only
established provided that 3QC excitation is feasible. For
instance, no 2D NMR peaks would appear from the
same experiment performed on diluted [13C2]glycine,
and this experiment may lead to spectral simplification
in uniformly labeled macromolecules.

A pulse scheme for 3Q–1Q correlation spectroscopy
is depicted in Fig. 1C: the evolution interval is now in-
serted between the pulse blocks for 3QC excitation and

reconversion. This experimental strategy was previously
introduced for 1H 3Q–1Q correlations [39] and was
briefly discussed in the current context of second-order



Fig. 2. 2D 3QF 1Q–1Q correlation spectrum from a powder of [U-13C,15N]LL-alanine (partially deuterated), recorded at B0 = 4.7 T and xr/2p
= 7.6 kHz, using the pulse scheme of Fig. 1B with equal durations of ðR1873Þ3

1 for 3QF excitation and reconversion: sexc = srec = 2.76 ms
(corresponding to qexc = qrec = 7). The recoupling pulses employed xC

nut=2p ¼ 110 kHz and Rðb ¼ 52�Þ; fp = 0.33. Proton decoupling nutation
frequencies were xH

nut=2p ¼ 110 and 117 kHz during 13C pulses and windows of ðR1873Þ3
1, respectively, with 1H RF phases specified in [20].
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based recoupling in [20]. During t1, the triple-quantum
coherences evolve under the sum of chemical shift inter-
actions within the spin triad. Next, the 3QC are recon-
verted into observable transverse magnetization by
another sequence of ðR1873Þ3

1 irradiation of duration srec
followed by a p/2 pulse and signal acquisition. The
phase factor expfit1ðxiso

p þ xiso
q þ xiso

r Þg involving the
sum of isotropic chemical shifts of the pqr spin triplet
(anisotropic chemical shifts, producing sidebands in
the x1-dimension, are disregarded) is generally unique
to each 3QC and corresponds to the x1 coordinate in
the 2D 3Q–1Q correlation spectrum. Fourier transfor-
mation of the s (t1,t2) set produces a 2D spectrum that
correlates each 3QC with its three corresponding
single-quantum coherences. [13C3]alanine represents
the simplest spin system producing only one peak in
the x1 dimension of its 3Q–1Q correlation spectrum
(Fig. 3).
3. Second-order 3Q dipolar recoupling

This section briefly outlines the gist of generating a
time-independent 3Q average Hamiltonian. A more de-
tailed formulation may be found in [19,20].
3.1. Dipolar interaction under MAS

We consider a system of three spins-1/2 (of species
S), denoted p, q, and r and coupled pair-wise as pq,
pr, and qr by the through-space dipolar interaction.
Other spin interactions such as chemical shifts and
J-couplings are ignored. The Hamiltonian HK of a
general spin interaction K is a product of a compo-
nent m of a lth rank spatial irreducible spherical ten-
sor AK, and a component l of a kth rank spin
irreducible spherical tensor operator TK [22,23]. The
spin and spatial parts are denoted AK

lm and T K
kl, respec-

tively, with the components taking integer values in
the range �l 6 m 6 l and �k 6 l 6 k. The homonu-
clear S–S dipolar interaction is second rank with re-
spect to rotations of its spatial and spin rank (l = 2
and k = 2).

The high-field dipolar Hamiltonian for the coupling
pq may be expressed

HpqðtÞ ¼ xpqðtÞ
1ffiffiffi
6

p 2SpzSqz �
1

2
Sþ
p S

�
q þ S�

p S
þ
q

� �� �
; ð6Þ

where application of MAS imposes a time-dependence
of the dipolar frequency according to



Fig. 3. 2D 3Q–1Q correlation spectrum of [U-13C, 15N]LL-alanine at
4.7 T with acquisition parameters as given in Fig. 2. The spectrum
displays one peak in the x1-dimension, at the 3QC frequency of the
three 13C sites in the molecule.
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xpqðtÞ ¼
X2

m¼�2

Apq
2m½ �Rd2

m0ðbRLÞ exp �imða0RL � xrtÞ
� 	

: ð7Þ

d2
m0ðbÞ is a second-rank reduced Wigner element [40],

and a0RL defines the rotor position at time origin t = 0.
½Apq

2m�
R is the mth dipolar component in a rotor frame R

fixed on the sample holder; its z-axis subtends the angle
bRL ¼ arctan

ffiffiffi
2

p
with respect to the static magnetic field.

The rotor-frame component is related to the coupling
constant bpq by a sequence of rotations, involving an
intermediate molecular frame M that is fixed on an arbi-
trary fragment of the molecule

Apq
2m½ �R ¼

ffiffiffi
6

p
bpq exp �imcMRf g

X2

m0¼�2

D2
0m0 ðXpq

PMÞd2
m0mðbMRÞ

� expf�im0aMRg ð8Þ

with the dipolar coupling constant bpq related to the
internuclear distance rpq and the gyromagnetic ratio
cS, according to

bpq ¼ � l0

4p
c2S�hr

�3
pq : ð9Þ

The set of Euler angles Xpq
PM defines the orientation of the

principal axis system P (whose z-axis coincides with the
p–q internuclear vector). Likewise, the crystallite orien-
tation relative to the rotor frame is parametrized by
XMR, that are randomly distributed in a powder.

3.2. 3Q average Hamiltonian

In an RF field interaction representation, the dipolar
Hamiltonian of spin-pair pq may be expressed [41]

~HpqðtÞ ¼
X
l

~xpqðtÞT pq
2l ð10Þ

and the total Hamiltonian is given as a sum over the
three pairs of dipolar couplings

~HðtÞ ¼
X

IJ¼pq;pr;qr

X
l

~xIJ ðtÞT IJ
2l: ð11Þ

A time-independent average Hamiltonian may be
obtained by applying the Magnus expansion [42]

H ¼ H
ð1Þ þ H

ð2Þ þ H
ð3Þ þ � � � ð12Þ

over the period T of a time-periodic pulse sequence
starting at time-point t0. This procedure leads to a series
of time-independent average Hamiltonian expansion
terms [22,23]:

H
ð1Þ ¼ 1

T

X
IJ¼pq;pr;qr

X
l

T IJ
2l

Z t0þT

t0
dt ~xIJ ðtÞ; ð13Þ

H
ð2Þ ¼ 2iTð Þ�1

X
IJ ;KL¼fpq;pr;qrg
IJ 6¼KL

X
l2;l1

T IJ
2l2

; T KL
2l1

h i

�
Z t0þT

t0
dt0

Z t0

t0
dt~xIJ ðt0Þ~xKLðtÞ; ð14Þ

where the summation is over all distinct spin pairs, se-
lected from the set of couplings {pq,pr,qr}. Note that
we employ a perturbation order indexing starting at
one, as in [43,44].

The aim in recoupling is traditionally to obtain the
desired average Hamiltonian by means of Eq. (13): this
is referred to as first-order recoupling and is effected by
rotating the laboratory frame Hamiltonian by the se-
quence of RF pulses, such that the spin system is effec-
tively evolving under a new, transformed Hamiltonian.
However, we are interested in obtaining a 3Q average
dipolar Hamiltonian, which is proportional to three-
spin operators of the form Sþ

p S
þ
q S

þ
r and S�

p S
�
q S

�
r . As

the laboratory frame dipolar Hamiltonian may only be
rotated into a linear combination of two-spin operators
T2l, three-spin 3Q operators are only achieved to sec-
ond-order AHT: hence the terminology second-order
recoupling [19,20,25]. According to Eq. (14), the ±3Q
Hamiltonian terms arise from commutators involving
a 1Q operator from one coupling pair (e.g., T pq

2�1) and
a 2Q operator ðT qr

2�2Þ from a different pair. In the pres-
ence of several interactions (chemical shifts and J-cou-
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plings), the resulting first and second-order average
Hamiltonians comprise a large number of contributions.
The application of a ðRN m

nÞ3
1 pulse sequence ensures

that only 3Q and ZQ dipolar terms are recoupled
[19,20]. The ZQ terms may be removed by another stage
of supercycling, at a price of a slightly modified form of
the 3Q average Hamiltonian [20]. Isotropic J-couplings
also survive ðRN m

nÞ3
1 schemes. While J-couplings com-

mute with the 3Q Hamiltonian in three-spin systems,
they interfere with the 3QC dynamics in larger systems.
Illustrations of the impact from ZQ terms and J-cou-
plings on the 3QC dynamics will be considered in Sec-
tion 9; up to that point we ignore their effects.

The total second-order 3Q average Hamiltonian in a
large spin system is a sum over the contributions from
all distinct spin-triplets pqr, and may be expressed

H 3Q ¼
X
p<q<r

1

4
xpqrS

þ
p S

þ
q S

þ
r þ x	

pqrS
�
p S

�
q S

�
r

� �
: ð15Þ

The 3QC frequency xpqr is expressed as a sum over pair-
wise products of dipolar couplings bpqbpr, each multiplied
by a scaling factor j depending on the particular recou-
pling sequence used. Its explicit expression is given in [20].
4. Definition of polarization transfer functions

In the following, we assume a system of N coupled
spins-1/2, a single crystallite orientation parametrized
Fig. 4. (A) Depiction of systems comprising four coupled spins-1/2 (p, q,
unpolarized and polarized spins, respectively. The system at the top has equ
density operator is given by q = Sz = Spz + Sqz + S rz + Ssz. (B) Depiction of f
are encircled, and the remaining spin is shaded. (C) Illustration of the transfer
also corresponding to z-polarization (qT = Sz): the 3QF amplitude as function
(D) Illustration of the transfer process f pqr

p!qðsÞ, implying that the initial polar
spin q.
by the Euler angles XMR and that the intervals for exci-
tation and reconversion of 3QC are equal: sex-
c = srec = s. The function f 3Q

qS!qT
describes the

polarization transfer from a density operator of the
source ensemble state qS ” q (t = t0) going through
3QC to a target state qT. In the superoperator formalism
[37,45], it may be formulated

f 3Q
qS!qT

ðs;XMR;U
0
recÞ

¼
qT j bU recðs;XMR;U

0
recÞbP ð3Þ bU excðs;XMRÞ j qS

� �
ðqS j qSÞ

ð16Þ

with bP ð3Þ
being a super-operator for filtering of 3QC.

The propagation superoperator for 3QC excitation is

bU excðs;XMRÞ ¼ expf�i bH comm

3Q sg; ð17Þ

where the superscript �comm� denotes a commutator
superoperator: bAcomm

jBÞ � j½A;B�Þ [37,45]. The reconver-
sion propagator is related to the corresponding excita-
tion propagator throughbU recðs;XMR;U

0
recÞ ¼ bRzðU0

recÞ bU excðs;XMRÞbRzð�U0
recÞ;

ð18Þ
where the z-rotation superoperator is given bybRzðUÞ ¼ expf�iUbS comm

z g, and bS comm

z is the commutator
superoperator for the total z-angular momentum opera-
tor Sz = Spz + Sqz + Srz + � � �.

The transfer may take various 3QC pathways, as
illustrated for the case of four coupled spins in Fig. 4.
r, and s) in a linear configuration. Light and dark shadings indicate
al polarization of all spins, i.e., for an ensemble of such systems, the
our distinct triple-quantum coherences. The spins involved in each 3QC
of total z-polarization (qS = Sz) through total 3QC with the target state
of the 3QC excitation interval (s) is described by the function f 3Q

Z!ZðsÞ.
ization of spin p is transferred through 3QC of spin triplet pqr over to
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We classify the various processes as follows: (i) transfer
through total 3QC of the spin system, denoted by a
superscript �3Q� (f 3Q) and (ii) transfer through one

3QC, in the following exemplified by 3Q(pqr) and de-
noted f pqr. If no superscript is specified for a transfer
function, its result apply generally either to the total
3QC or one 3QC component.

In the cases considered here, both the source (qS) and
target (qT) ensemble states correspond to z-polarization:
we focus on transfer either from a system initially having
equal polarizations of all spins, qS = Sz, or with initial
polarization of only one spin, say qS = Spz. Both scenar-
ios are illustrated in Fig. 4A. We will employ the follow-
ing shorthand transfer function notation: f 3Q

Z!Z denotes
the transfer of total z-angular momentum through total
3QC coherence, Sz !

3Q
Sz, where �3Q� is given by the sum

over all distinct spin-triplets (Fig. 4C). For example, in a
three-spin system, 3Q = 3Q(pqr), whereas in a four-spin
system with spins (p,q,r,s), 3Q = 3Q(pqr) +
3Q(pqs) + 3Q(prs) + 3Q(qrs). The polarization transfer

from spin p to spin q through 3Q(pqr), Spz 


!3QðpqrÞ
Sqz, is

denoted f pqr
p!q and shown in Fig. 4D. According to Eq.

(16), these two examples correspond to

f 3Q
Z!Zðs;XMR;U

0
recÞ

¼ ðSzj bU rec
ðs;XMR;U

0
recÞbP ð3Þ

tot
bU exc

ðs;XMRÞjSzÞ
ðSzjSzÞ

ð19Þ

and

f pqr
p!qðs;XMR;U

0
recÞ

¼
ðSqzj bU rec

ðs;XMR;U
0
recÞbP ð3Þ

pqr
bU exc

ðs;XMRÞjSpzÞ
ðSpz j SpzÞ

;
ð20Þ

respectively. The projection super-operator for filtering
through the coherence 3Q(pqr) is given by

bP ð3Þ
pqr ¼

jSþ
p S

þ
q S

þ
r ÞðSþ

p S
þ
q S

þ
r j

ðSþ
p S

þ
q S

þ
r jSþ

p S
þ
q S

þ
r Þ

þ
jS�

p S
�
q S

�
r ÞðS�

p S
�
q S

�
r j

ðS�
p S

�
q S

�
r jS�

p S
�
q S

�
r Þ

ð21Þ

and bP ð3Þ
tot is the sum over all such 3QC projection

operators:

bP ð3Þ
tot ¼

Xall spin triplets

pqr

bP ð3Þ
pqr: ð22Þ

We condense the notation by observing that all polar-
ization transfer functions depend on the reconversion
phase as follows:

fqS!qTðs;XMR;U
0
recÞ ¼ fqS!qTðs;XMR; 0Þ cosf3U0

recg ð23Þ

and assume that U0
rec ¼ p. However, this expression is

only relevant for one given set of angles XMR = {aMR,
bMR,cMR}. We are also concerned with 3QC excitation
dynamics in powders, necessitating the calculation of
an orientational average over XMR
fqS!qTðs;U
0
rec ¼ pÞ

� �
XMR

¼ 1

8p2

Z 2p

0

daMR

Z p

0

sin bMRdbMR

�
Z 2p

0

dcMRfqS!qTðs;XMR; pÞ: ð24Þ

In all that follows, we will report transfer functions
abbreviated as:

fqS!qTðsÞ � fqS!qTðs;XMR; pÞ ð25Þ

for single crystallite orientations, or the corresponding
powder averages.

With our assumption that both source and target
states involve longitudinal polarization, the 3QC trans-
fer functions are real, and have the following properties,
regardless of the size of the spin system:

(i) The direction of transfer is irrelevant up to a nor-
malization factor involving the target state:

fqS!qTðsÞ
ðqTjqTÞ

¼ fqT!qSðsÞ
ðqSjqSÞ

: ð26Þ

This is well-known from magnetization-exchange exper-
iments, where cross-peaks appearing symmetrically
around the diagonal of the 2D spectrum have equal
intensities, provided that the two exchanging spins are
initially prepared with equal polarizations [37,46].
(ii) A function involving transfer to total z-polarization
may be decomposed into a sum over transfers to each
individual spin

fqS!ZðsÞ ¼
Xall spins

p

fqS!pðsÞ: ð27Þ

(iii) Transfer through total 3QC is equal to the sum of
transfer pathways through each distinct spin triplet

f 3Q
qS!qT

ðsÞ ¼
Xall triplets

pqr

f pqr
qS!qT

ðsÞ: ð28Þ
5. 3QC dynamics in three-spin systems

In this section, we discuss the analytical transfer func-
tions obtained in a system comprising three coupled
spins (p, q, and r). Upon 3QF, the initial z-polarization
is distributed evenly over the spins: each contributes
with 1/3 to the total transfer, leading to the expressions

f 3Q
Z!ZðsÞ ¼ 3f 3Q

Z!pðsÞ ¼ 3f 3Q
p!pðsÞ ¼ 3f 3Q

p!qðsÞ

¼ 3

4
sin2 1

2
xeffs


 �
ð29Þ

with the effective 3QC oscillation frequency xeff given by

xeff ¼ jxpqrj: ð30Þ



Fig. 5. (A and B) Numerical average Hamiltonian simulations [based
on Eq. (19)] illustrating the dependence of the f 3Q

Z!ZðsÞ curves on the
inter-bond angle h (the intersecting angle between the pq and pr

internuclear vectors) in a three-spin system, assuming the 3Q average
Hamiltonian obtained from ðR1873Þ3

1 with element Rðb ¼ 55�Þ and
pulse fraction fp = 0.30 at a spinning frequency xr/2p = 15.0 kHz. The
dipolar couplings bpq = bpr = � 2250 Æ 2p rads�1 were kept constant in
all calculations, and the coupling bqr was adjusted according to values
of h in the range (a) 60� 6 h 6 120� and (b) 120� 6 h 6 180�. (C) 3QF
efficiency curves from the average Hamiltonian of the 2Q recoupling
sequence POST-C7 [43], applied to an initial state of transverse
polarization, qS = Sx, to effect 3QC excitation at xr/2p = 5.2 kHz.
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These predictions are verified experimentally by the 2D
spectrum acquired on [13C3]alanine (Fig. 2). It displays
nine peaks, with very similar integrated intensities, as ex-
pected from Eq. (29). There are three diagonal peaks,
whose integrals correspond to the values f 3Q

a!a; f
3Q
b!b,

and f 3Q
CO!CO (evaluated for the excitation interval

s = 2.76 ms). The remaining six signals are ‘‘cross
peaks’’ originating from transfers between distinct spins;
for example, the integrals of the peaks at the CO and a
sites (the top slice of Fig. 2) represent the transfer func-
tions f 3Q

b!CO and f 3Q
b!a, respectively.

Generally, a three-spin system subject to a 3Q Ham-
iltonian is oscillating between 3QC and ZQC, the latter
transfer function represented by f ZQ

Z!ZðsÞ, and related to
f 3Q
Z!ZðsÞ by the normalization condition f ZQ

Z!ZðsÞþ
f 3Q
Z!ZðsÞ ¼ 1. 3QC excitation dynamics in a three-spin
system using a 3Q average Hamiltonian is essentially
identical to 2QC excitation in a two-spin system using
a 2Q Hamiltonian of the form

H 2Q ¼ 1

2
xpqS

þ
p S

þ
q þ x	

pqS
�
p S

�
q

� �
: ð31Þ

Such 2Q average Hamiltonians are generated by recou-
pling sequences like C7 [41,43], DRAMA [47], MELO-
DRAMA [38], and BABA [48], and leads to a 2QF
function f 2Q

Z!ZðsÞ corresponding to

f 2Q
Z!ZðsÞ ¼ sin2ðjxpqjsÞ: ð32Þ
The main differences between the two cases are that (i)
the 3QC frequency xpqr is built from products of cou-
plings (xpqr 
 bpqbpr) and (ii) it is possible to effect
loss-less Sz fi Sz transfer through 2QC in a spin-pair
from one crystallite orientation (Eq. (32)), whereas the
optimum Sz ! Sz transfer through 3QC in a spin triplet
only amounts to 75% (Eq. (29)). This agrees with the
theoretical upper unitary bound of polarization transfer
[49]. However, reaching this in solid state NMR is only
possible using the 3Q Hamiltonian of Eq. (15): alterna-
tive 3QC excitation techniques [50,51] provides less than
30% transfer efficiency for a single crystallite
orientation.

The 3QF efficiency is lower in a powdered sample due
to the orientational dependence of the recoupling. The
maximum efficiency depends both on the spin system
geometry and the particular 3Q recoupling sequence.
For example, for ðR1873Þ3

1 it amounts to 51 and 56%
for linear and equilateral spin triplet configurations,
respectively. The latter geometry allows for 67% 3QF
efficiency using another recoupling sequence ðR1432Þ3

1

(introduced in [20]). We believe this is the global maxi-
mum for 3Q recoupling in powders.

Fig. 5 shows a set of numerically simulated curves
f 3Q
Z!ZðsÞ from ðR1873Þ3

1 using the pulse element
Rðb ¼ 55�Þ at a spinning frequency xr/2p = 15.0 kHz,
and including only its 3Q average Hamiltonian part.
They demonstrate that by passing total z-polarization
through 3QC, it is feasible to estimate the inter-bond an-
gle h (defined as the angle between the pq and pr inter-
nuclear vectors). However, by comparing the transfer
curves f 3Q

Z!Zðs; hÞ over the ranges 60� 6 h 6 120� (Fig.
5A) and 120� 6 h 6 180� (Fig. 5B) it is clear that a
degeneracy occurs around h � 130�. The transfer func-
tion symmetry for relatively short excitation intervals
obeys approximately the relationship f 3Q

Z!Zðs; 130��
/Þ � f 3Q

Z!Zðs; 130� þ /Þ for 0� 6 / 6 50�. This implies
that an unambiguous determination of h is only possible
if the bond angle may first be assessed to be either smal-
ler or larger than �130�. All values of h give different
oscillation frequencies over large values of s, but this
is not of much help in practice for 13C applications, as
experiments need to the conducted over prohibitively
long excitation intervals. In the range h < 60�, there
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are strong variations in the 3QF curves: the 3QC build-
up is much faster, as the dipolar coupling between the
‘‘non-bonded’’ nuclei exceeds those of the directly
bonded ones (bqr > bpq = bpr). However, those results
are not presented as such spin topologies are rarely
encountered.

As discussed in [17,50], an alternative route to 3QC
excitation in three-spin systems is to apply a 2Q recou-
pling sequence to an initial state of transverse polariza-
tion. The 3QC dynamics by the two-spin 2Q dipolar
Hamiltonian (Eq. (31)) may be evaluated analytically
in three-spin systems [50]: Fig. 5C displays the resulting
curves based on the average Hamiltonian of POST-C7
[43]. Apart from faster 3QC dynamics, as well as much
lower 3QF amplitudes, the dependence of the dynamics
on h is markedly lower compared to the case of 3Q-
recoupling. We conclude that the chances of geometry
determinations in a three-spin system are higher using
the 3Q recoupling sequence ðR1873Þ3

1 compared to using
a 2Q recoupling sequence.
6. 3QC dynamics in four-spin systems

The possibilities of polarization transfers between the
various members (p, q, r, and s) of a four-spin system are
richer than that of three coupled spins. Some scenarios
Fig. 6. Illustration of various polarization transfers from an ensemble of
polarization of spin p, i.e., qS = Spz. Three main 3QC pathways are indic
coherence, resulting in the series of functions f 3Q

p!qT
ðsÞ. The polarization may b

In practice, the processes A-1 and A-2 are occurring simultaneously, and the
the function f 3Q

p!ZðsÞ. The middle pathway corresponds to transfer through th
transfer back to p (case B-1), to spins q and r that are involved in 3Q(pqr) (B
these pathways corresponds to case B-4, represented by f pqr

p!ZðsÞ. The righ
polarization transfer from a spin (p) not involved in the mediating 3QC. Al
generally in 3QF 1D experiments, whereas each of the pathways through 3Q(
1Q experiment, with a corresponding peak along x2 involving the frequency o
3QF 1Q–1Q experiments, whereas those of A-2, B-2, B-3, and C-2 result in
are depicted in Fig. 6. The corresponding transfer func-
tions will be discussed in the following sections. Simi-
larly to the three-spin case, all transfer functions
involve an effective frequency

xeff ¼ ðjxpqrj2 þ jxpqsj2 þ jxprsj2 þ jxqrsj2Þ1=2: ð33Þ
It is convenient to define the frequency

Xp ¼ ðjxpqrj2 þ jxpqsj2 þ jxprsj2Þ1=2 ð34Þ
proportional to the root-mean-square over 3QC fre-
quencies of all triplets involving spin p, as well as

Xpq ¼ ðjxpqrj2 þ jxpqsj2Þ1=2 ð35Þ
involving both spins p and q. The frequencies are related
by X2

p ¼ X2
pq þ jxprsj2 and X2

p þ jxqrsj2 ¼ x2
eff . These def-

initions also apply to any permutation of the spin indi-
ces (p, q, r, and s), e.g., X2

s ¼ jxpqsj2 þ jxprsj2 þ jxqrsj2
and X2

qr ¼ jxpqrj2 þ jxqrsj2, etc. The size of the transfer
functions gives insight about the time-scale for which
cross-peaks develop in a 2D correlation spectrum incor-
porating 3QF, as well as how their intensities relate to
the coupling topology of the spin-system. The functions
discussed here are proportional to powers of ratios
involving individual 3QC frequencies relative to the
effective 3QC frequency, e.g., (|xpqr|/xeff)

2. As these ra-
tios are always smaller than unity, the higher the power
n, the smaller the magnitude of the ratio to the power of
four coupled spins (labeled p, q, r, and s), starting with longitudinal
ated, where the left describes transfer through total triple-quantum
e transferred either back to spin p (case A-1), or to a distinct spin (A-2).
sum over all possible pathways results in the process A-3, expressed by
e 3QC of spins pqr (associated with f pqr

p!qT
ðsÞ), and may result either in

-2), but also to spin s not included in the coherence (B-3). The sum of
t part of the figure (C-1, C-2, and C-3) shows various scenarios for
l depicted cases have experimental relevance: A-3, B-4, and C-3 occur
pqr) and 3Q(qrs) manifests as a peaks along the x1-dimension in a 3Q–
f the target spin. The transfers A-1, B-1, and C-1 give diagonal peaks in
‘‘cross-peaks.’’
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n. Generally, a high power is accompanied with a high
power of the trigonometric function that describes the
cross-peak buildup (e.g., sinnð1

2
xeffsÞ): the higher the

power, the slower the cross-peak buildup.

6.1. Polarization transfers through total 3QC

The function associated with the transfer Sz !
3Q

Sz for
a single crystallite orientation is analogous to that of
the three-spin case, except that the maximum transfer
is reduced from 3/4 to 9/16

f 3Q
Z!ZðsÞ ¼

9

16
sin2 1

2
xeffs


 �
: ð36Þ

Starting from polarization of one spin and letting it pass
through 3QC leads to an intensity distribution among
the four spins in the 3QF spectrum (for a fixed value
of s) according to (cf. case A-3 of Fig. 6)

f 3Q
Z!pðsÞ ¼

1

4
f 3Q
p!ZðsÞ ¼

3

16

X2
p

x2
eff

sin2 1

2
xeffs


 �
: ð37Þ
Fig. 7. Numerical average Hamiltonian simulations of using ðR1873Þ3
1 [Rðb ¼

arranged in a linear configuration with equal internuclear distances (r = 1.5 Å
corresponding magnitudes of the dipolar coupling constants are given in kH
displays simulations for a single crystallite orientation {aPR, bPR, cPR} = {
averages. (A and B) Transfer functions involving total z-polarization as eithe
one spin to another through total 3QC. (E and F) Transfers between spins
equal horizontal but different vertical scales.
The relationship f 3Q
p!ZðsÞ ¼ 4f 3Q

Z!pðsÞ follows from Eq.
(26) with the normalization (Sz|Sz) = 4(Spz|Spz). The fac-
tor X2

p; including the 3QC frequencies from all spin trip-
lets involving p, appears as a weight factor of the
amplitude of the transfer function. Hence, upon 3QF,
the polarization distributes unevenly and the relative
peak amplitudes in the 3QF spectrum carry information
about the distributions of dipolar coupling strengths
within the spin system.

Figs. 7A and B show a selection of numerically calcu-
lated transfer functions, all involving total z-polariza-
tion (Sz) as source state for a single crystallite
orientation (A) and a powder (B) in the case of a linear
spin configuration. As expected, the maximum value of
the function f 3Q

Z!ZðsÞ is 0.5625 from a single crystallite,
whereas the powder average maximum amounts only
to 0.38. This spin topology emphasizes the dipolar ef-
fects of nearest neighboring spins, since maximal atten-
uation is effected for couplings between more distant
spins through the r�3 dependence. A high relative 3QF
55�Þ, fp = 0.30] at xr/2p = 15.0 kHz on a system of four coupled 13C,
) between nearest neighbors. Note that all dipolar vectors coincide. The
z as indicated at the top of the figure. The left panel (A, C, and E)

0, 40�, 0}, whereas the right panel (B, D, and E) represents powder
r source or target ensemble states (or both). (C and D) Transfers from
through the 3QC of one spin triplet, 3Q(pqr). Note that all plots have
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amplitude of a given spin results from large dipolar cou-
plings to its neighbors. These results are representative
also for other four-spin chains. For the present set of
dipolar couplings (Fig. 7), we obtain relative peak
amplitudes from spins p:q:r:s according to
0.170:0.330:0.330:0.170, i.e., a quartet with the intensi-
ties of the two ‘‘inner’’ spins (q, r) of the chain being al-
most exactly twice as large as those from the terminal
ones (p, s). Other coupling topologies provide different
peak intensity patterns in the 3QF spectrum. For exam-
ple, if the q–r and r–s distances are set 1.5 and 1.25 times
longer, respectively, than that between p–q, the ampli-
tude distribution changes into 0.268:0.330:0.325:0.076.

On the other hand, assume that we start with polariza-
tion of spin p, and consider the transfer Spz !

3Q
Spz, i.e., spin

p is both the source and target, as depicted by case A-1 in
Fig. 6. The corresponding function f 3Q

p!pðsÞ evaluates as

f 3Q
p!pðsÞ ¼

X2
pF

2
p

x4
eff

sin2 1

4
xeffs


 �

¼
X2

p

x4
eff

jxqrsj2 þ X2
pcos

2 1

4
xeffs


 �� �
sin2 1

4
xeffs


 �
;

ð38Þ
where F 2

p is a sum of two terms; one proportional to X2
p,

dependent on all dipolar couplings involving spin p, and
|xqrs|

2 which involves all couplings but those to p

F p ¼ jxqrsj2 þ X2
pcos

2 1

4
xeffs


 �� �1=2

: ð39Þ

Note that for short excitation intervals ð1
4
xeffs � 1Þ,

F 2
p � jxeff j2 and the initial buildup for f 3Q

p!p is propor-
tional to X2

ps
2=16.

The transfer through total 3QC to a distinct target
spin q (case A-2 of Fig. 6) corresponds to

f 3Q
p!qðsÞ¼

1

4

X2
pq

x2
eff

sin2 1

2
xeffs


 �
�jxprsj2jxqrsj2

x4
eff

sin4 1

4
xeffs


 �
:

ð40Þ
This function is a sum of two opposing terms. The first is
proportional to X2

pq=x
2
eff ; it dominates at short 3QC exci-

tation intervals and leads to a positive transfer ampli-
tude in a 3QF 3Q–1Q correlation experiment. The
second term is negative and proportional to the product
of frequencies �|xprs|

2|xqrs|
2/xeff

4; it is characterized by a
significantly slower transfer, although this term may
dominate for large values of s.

Some representative curves are shown in Figs. 7C and
D: they are relevant in 3QF 1Q–1Q 2D correlation exper-
iments as they describe polarization transfers between
various spins within the system. For the present dipolar
coupling network, we get the following set of transfer
processes: f 3Q

p!p ¼ f 3Q
s!s; f 3Q

q!q ¼ f 3Q
r!r; f 3Q

p!q ¼ f 3Q
r!s ¼

f 3Q
p!r ¼ f 3Q

q!s as well as the two ‘‘unique’’ and distinct cases
f 3Q
q!r and f 3Q

p!s. The function f 3Q
q!r is not displayed, as it has
an almost identical buildup to f 3Q
q!q. It is evident from the

simulations that the fastest transfer occurs for f 3Q
q!q, being

roughly twice as that of f 3Q
p!q and f 3Q

p!p, whereas f
3Q
p!s pro-

vides a significantly slower buildup and with a negative
amplitude.

6.2. Polarization transfers between individual spins

through one 3QC

We now turn our attention to inter-spin polarization
transfer processes through each individual triple-quan-
tum coherence of the system; they are relevant for pre-
dicting the distribution of amplitudes in slices along
the 1Q dimension in 2D 3Q–1Q correlation experiments.
Although this class of transfers will be exemplified with
3Q(pqr), analogous expressions are obtained upon per-
mutations of the spin labels. All these functions are pro-
portional to the frequency |xpqr|

2 and the trigonometric
function sin2ð1

4
xeffsÞ: We first consider transfers where

both source and target spins are part of the mediating
3QC, as illustrated by case B-2 of Fig. 6. The generic
transfer function may be expressed

f pqr
p!qðsÞ ¼

jxpqrj2F 2
pF

2
q

x6
eff

sin2 1

4
xeffs


 �
; ð41Þ

where the functions F 2
p and F 2

q (Eq. (39)) depends on the
source and target spins, respectively. The special case
when the source and target spins are equal then corre-
sponds to B-1 of Fig. 6 and the transfer function casts as

f pqr
p!pðsÞ¼

jxpqrj2F 4
p

x6
eff

sin2 1

4
xeffs


 �

¼ jxpqrj2

x6
eff

jxqrsj2þX2
p cos

1

4
xeffs


 �� �2

sin2 1

4
xeffs


 �
:

ð42Þ

Note that, as the functions F 2
p and F 2

q tend to x2
eff in the

limit of short excitation intervals s, the initial slopes of
the functions f pqr

p!pðsÞ and f pqr
p!qðsÞ are generally equal

and proportional to |xpqr|
2s2/16, as illustrated by the

numerical simulations in Figs. 7E and F.
In all cases considered so far, both source and target

spins were involved in the mediating 3QC. Transfers are,
however, possible where either the source or target spins
are not part of the mediating coherence. Examples in-

clude Spz !3QðpqrÞ
Ssz and Ssz !3QðpqrÞ

Sqz. These indirect trans-
fers are slow and occur over longer mixing periods in
correlation experiments. The transfer from one spin,
subsequently involved in the 3QC, to a target spin not in-
volved in that coherence, is illustrated by case B-3 of
Fig. 6 and associated with the function

f pqr
p!sðsÞ ¼ �2

jxpqrj2F 2
pX

2
s

x6
eff

sin2 1

8
xeffs


 �
sin2 1

4
xeffs


 �
:

ð43Þ



Fig. 8. Comparison of powder averaged transfer functions f 3Q
Z!ZðsÞ for

linear chains of three, four, and six spins, as well as spins at the vertices
of tetrahedra and octahedra, in all cases assuming coupling constants
of �2251 Hz between nearest neighbors. Other simulation parameters
are as in Fig. 7. Note the enhanced 3QC buildup rate as either the
number of spins or the dimensionality of the spin topology increases.
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Note the negative sign, indicating that the resulting
NMR peak amplitude of the transfer from spin p to spin
s is negative. From the symmetries of the transfer func-
tions, an analogous expression is obtained for the trans-
fer from a source spin not involved in the 3QC to a spin
being part of the mediating 3QC, e.g., the functions
f pqr
s!pðsÞ and f qrs

p!sðsÞ. The latter case is illustrated by C-2
of Fig. 6 and also simulated in Figs. 7E and F.

In a four-spin system, there is only one case where
neither the source nor target spins are part in the mediat-
ing 3QC, namely if they are equal as in the case

Spz !3QðqrsÞ
Spz (C-1). The resulting transfer function is

given by

f qrs
p!pðsÞ ¼ 4

jxqrsj2X4
p

x6
eff

sin4 1

8
xeffs


 �
sin2 1

4
xeffs


 �
: ð44Þ

Note that despite the amplitude of the function is posi-
tive like the ‘‘direct’’ transfers of Eq. (41), it is a very
slow process due to the factor sin4ð1

8
xeffsÞ. Hence, such

cross-peaks develop even slower than those associated
with the indirect processes f pqr

p!sðsÞ and f qrs
p!qðsÞ (Eq.

(43)). This is confirmed by the simulations in Fig. 7.

6.3. Polarization transfer of Sz through one 3QC

Using the relationships between polarization trans-
fers and individual spins through 3Q(pqr), we can calcu-
late the functions involving Sz as source or target. The
transfer from any of the spins contributing to the 3QC
[e.g., 3Q(pqr)] is obtained from Eq. (27)

f pqr
p!ZðsÞ ¼ f pqr

p!pðsÞ þ f pqr
p!qðsÞ þ f pqr

p!rðsÞ þ f pqr
p!sðsÞ ð45Þ

giving the expression

f pqr
Z!pðsÞ ¼

1

4
f pqr
p!ZðsÞ

¼ 3

8

jxpqrj2F 2
p

x4
eff

sin
1

4
xeffs


 �
sin

1

2
xeffs


 �
: ð46Þ

This process corresponds to B-4 of Fig. 6. In the case of
transfer of total polarization through a given 3QC (e.g.,
3Q(pqr)) to the target spin not involved in that spin

triplet, the process Sz 

!3QðpqrÞ
Sz is represented by

f pqr
Z!sðsÞ ¼

1

4
f pqr
s!ZðsÞ ¼ � 3

4

jxpqrj2X2
s

x4
eff

sin2 1

8
xeffs


 �

� sin
1

4
xeffs


 �
sin

1

2
xeffs


 �
: ð47Þ

Finally, the transfer of total polarization through one

3QC, Sz 

!3QðpqrÞ
Sz, corresponds to

f pqr
Z!ZðsÞ ¼

9

16

jxpqrj2

x2
eff

sin2 1

2
xeffs


 �
ð48Þ

from which Eq. (36) follows by summing over the four
distinct triple-quantum coherences as in Eq. (28). Eq.
(48) predicts that the transfer involving each pathway
is weighted by the ratio between the square of its 3QC
frequency and the effective frequency. From the set of
dipolar couplings in Fig. 7, we obtain two large and
equal ratios jxpqrj2=x2

eff � 0:491 associated with the
two 3QC involving solely directly connected nuclei,
i.e., 3Q(pqr) and 3Q(qrs), and two small ratios for
3Q(pqs) and 3Q(prs): jxpqsj2=x2

eff � 0:0087. This implies
that the total transfer is exclusively occurring through
the 3QC of spin triplets pqr and qrs, as corroborated
by the simulations of Fig. 7A, where the grey line corre-
sponding to the function f pqs

Z!Z is hardly discernible.
7. 3QC dynamics in larger clusters

The dependence of the 3QC buildup on the dimen-
sionality and size of the spin system is compared further
in Fig. 8. The powder averaged transfers f 3Q

Z!Z were sim-
ulated for linear chains comprising three, four, and six
spins, as well as from four and six spins arranged at
the vertices of a tetrahedron and octahedron, respec-
tively. The symmetric three-dimensional spin networks
provide significantly faster 3QC excitation than any of
the linear chains. For the chains, the initial rate of
3QC excitation enhances as the number of participating
spins increase, while the maximum attainable 3QF
amplitude is largest for the three-spin system. The exci-
tation intervals providing optimal 3QF amplitude in
each case are: 9.7 ms (three-spin chain), 6.8 ms (four-
spin chain), 4.0 ms (tetrahedron), and 2.5 ms
(octahedron).

The most interesting feature of these powder aver-
aged transfer function simulations is the optimal effi-
ciency achieved in the tetrahedral and octahedral
case: the value 0.532 of the former is only marginally

lower than the theoretical efficiency from a single crystal
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(0.5625). This is to the best of our knowledge the first
demonstration in MAS NMR of essentially identical
MQF efficiencies obtained from a powder and single
crystal. The recoupling sequence ðR1423Þ3

1 [20] provided
the even higher value f 3Q

Z!ZðsoptiÞ ¼ 0:553 (simulations
not shown). No attempts have been made to verify this
experimentally, but these predicted values from pow-
ders are unprecedented for high-order MQC excitation
under MAS conditions in systems comprising more
than three spins.
Fig. 9. Development of multiple-quantum coherences when applying
the average Hamiltonian generated by ðR1873Þ3

1 at xr/2p = 15.0 kHz
to spin systems prepared with equal longitudinal spin polarizations
(q(0) = Sz). The curves correspond to MQF functions f MQ

Z!ZðsÞ for the
following cases: (A) a powder of six-spin fragments of tyrosine and (B)
a single linear chain of seven 13C spins, oriented as {aPR, bPR,
cPR} = {0, 45�, 0} with equal internuclear distance (r = 1.5 Å) between
nearest neighbors. All dipolar couplings were considered. Only the
curves for excited coherences are shown, implying that only ZQC and
3QC develop from the six-spin ensemble.
8. High-order multiple-quantum excitation

In large spin systems, MQC orders higher that three
will develop under the action of a 3Q Hamiltonian.
The selection rules for the particular coherence orders
created depend on the nature of the average dipolar
Hamiltonian, the size of the spin system as well as
on the initial density operator. Selection rules have pre-
viously been thoroughly discussed for a variety of aver-
age Hamiltonians [11], in particular for those
comprising two-spin 1Q [4,52] and 2Q operators [5–
8]. In this section, we discuss the action of a three-spin
3Q Hamiltonian when applied to a density operator
corresponding to either longitudinal (q (0) = Sz) or
transverse (q (0) = Sx) polarization. These results were
obtained through the commutator properties of q (0)
and H 3Q.

8.1. Longitudinal polarization

Assuming an ensemble of infinitely large spin sys-
tems, initially prepared with longitudinal polarization
of each spin, the three-spin 3Q Hamiltonian effects mul-
tiple-quantum excitation by changing the coherence or-
der by ±3. Therefore, all coherence orders being integer
multiples of three (M = ±3, ±6, ±9) will develop succes-
sively. However, in finite spin clusters, the MQC excita-
tion under a given Hamiltonian is more selective, and
also depends on the size of the system N . For example,
it has been shown that it is not possible to excite 4QC in
four-spin systems using a two-spin 2Q Hamiltonian
[4,7,8,11]. Similarly, if N is an even multiple of three
(i.e., N ¼ 3k with k even), then the extreme coherence
orders M ¼ �N are not excitable by H 3Q. This implies
that from an ensemble of six-spin systems at thermal
equilibrium, only ZQC and 3QC may be excited. This
is verified by the numerical simulation in Fig. 9A, where
the powder averaged transfer functions f MQ

Z!ZðsÞ are plot-
ted for all MQC orders generated by ðR1873Þ3

1. Because
the MQ dynamics is confined to ZQC and 3QC, the 3QC
excitation is almost as efficient as in three-spin systems
(compare the simulations in Figs. 5 and 9). However,
6QC develop in larger systems, as shown by the seven-
spin simulation of Fig. 9B.
8.2. Transverse polarization

We continue the discussion assuming the spin system
ensemble is initially prepared with 1QC (transverse
polarization). The excitation dynamics is generally more
complicated than the previous case with longitudinal
polarization. We first note that 4QC cannot directly be
excited from 1QC (e.g., ½Sþ

s ; S
þ
p S

þ
q S

þ
r � ¼ 0). In general,

±1QC are instead first converted into «2QC (regardless
of the size of the spin system) which develop on a time-
scale linear in the excitation interval s. In three and four
spin systems, the ensemble state is therefore oscillating
between 1QC and 2QC, analogously to the partition be-
tween ZQC and 3QC in the case of longitudinal
polarization.

The smallest spin system which may excite coherence
orders higher than two is that of five spins, for which
both 4QC and 5QC are generated. The 5QC excitation
may be rationalized through the schematic process

Sþ
p !

S�p S
�
q S

�
r
SpzS

�
q S

�
r !

S�p S
�
s S

�
t
S�
p S

�
q S

�
r S

�
s S

�
t ð49Þ

which implies that 5QC are created on a time-scale 
s2.
4QC generally develop slower than 5QC, as the former
may only arise through ‘‘three-step’’ processes, accord-
ing to



Fig. 10. Simulations as in Fig. 9, but instead starting from transverse polarization: q(0) = Sx. Diagrams B and D correspond to zoomed regions of A
and C, respectively, and reveal the rather weak excitation of the extreme coherence-order.
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Hence, the +1Q operator of spin p is converted into a five-
spin operator Sþ

p SqzS
þ
r S

þ
s S

þ
t , corresponding to +4QC of

the quartet prst. Altogether, this implies a cubic depen-
dence on the excitation interval (
s3) for 4QC excitation.

From an ensemble state of transverse polarization, the
trilinear 3Q Hamiltonian creates in general all coherence
orders M 6 N , except those being integral multiples of
three. This is illustrated by the simulations involving six
and seven spins, shown in Figs. 10A and C, respectively.
In the former case, 2QC, 4QC, and 5QC are excited from
1QC, whereas for the latter, weak 7QC excitation also oc-
curs. Despite that 5QC grows on a time-scale 
s2,
whereas 4QC only develop as s3, the amount of 4QC will
dominate that of 5QC over longer excitation intervals
(see Figs. 10B andD), as there are a larger number of pos-
sible routes to create 4QC compared to 5QC.
9. 2D correlation schemes: experiments and simulations

In Section 2 we demonstrated the 1Q–1Q and 3Q–1Q
correlation techniques for the three-spin system of
[13C3]alanine. Here we discuss them further in the con-
text of the nine coupled 13C of [U-13C]tyrosine.

9.1. 1Q–1Q correlation spectrum

The tyrosine 1Q–1Q correlation spectrum is shown in
Fig. 11, together with slices at the isotropic chemical
shifts of each site (right panel) as well as the 3QF 1Q
spectrum, obtained by projecting the 2D spectrum onto
the x2 axis. For the latter, the total signal intensity is
mainly concentrated among the aromatic 13C. As in
the 2D spectrum from alanine (Fig. 2), off-diagonal
cross-peaks arise between all sites separated by one or
two bonds. For example, consider the slice at the chem-
ical shift of the chemically equivalent d,d 0 sites: in addi-
tion to the diagonal peak from the transfer f 3Q

d;d0!d;d0 ,
strong off-diagonal peaks appear due to transfers from
d,d 0 to the directly bonded e,e 0 and c-sites, as well as
two weaker signals to the f and b sites separated by
two bonds. For the excitation interval employed
(sexc = 1.58 ms), several slices also manifest weak signals
originating from polarizations transmitted over three
bonds: for instance, there is transfer from the f-site to
the c-site, as well as between the b and e,e 0 sites.

We simulated some transfer functions using AHT.
Two examples are shown in Fig. 12, corresponding to
the transfers from sites a (A,B) and f (C,D) to their sur-
rounding 13C. The left diagrams of each row (A,C)
result from including only the 3Q terms of the second-
order average Hamiltonian, as in all previously pre-
sented calculations. However, the ðR1873Þ3

1 sequence
leaves the (first-order) homonuclear J-couplings intact
and also recouples a set of ZQ dipolar terms ðH ð2Þ

ZQÞ.
These Hamiltonian terms were included in the simula-
tions of Figs. 12B and D, which reveal significantly per-
turbed 3QC dynamics, even at short excitation intervals
(<1 ms), relative to that in Figs. 12A and C. Additional
simulations (not shown) indicate that 3QC dephasing in-
duced by the ZQ average Hamiltonian terms is the main
reason for the alterations of the 3QC oscillations and the
severe polarization transfer losses, as discussed further



Fig. 11. 2D 3QF 1Q–1Q correlation spectrum from a powder of [U- 13C,15N]LL-tyrosine, recorded using the pulse scheme in Fig. 1B with ðR1873Þ3
1 for

3QF [Rðb ¼ 53�Þ; fp = 0.33]. The right stack of spectra comprises slices taken at the isotropic chemical shift position of each site. The experiment
employed similar parameters as in the case of alanine (caption of Fig. 2), except sexc = srec = 1.58 ms (qexc = qrec = 4).

Fig. 12. Simulated polarization transfers when applying ðR1873Þ3
1 to a six-spin fragment of the tyrosine molecule, assuming initial polarization only

of the a-site (A and B) and f-site (C and D). The AHT simulations employed the experimental parameters of Fig. 11 but included only couplings
among the marked spins. Chemical shifts were not taken into account: ideally they are suppressed to second-order AHT. The dashed lines indicate
the excitation interval used experimentally in Fig. 11. The simulations in (A and C) were based on only the 3Q part ðH ð2Þ

3QÞ of the second-order average
Hamiltonian, whereas diagrams (B and D) resulted after also including the ZQ contributions ðH ð2Þ

ZQÞ and J-couplings ðH ð1Þ
J Þ.
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in [20]. The J-couplings in the absence of ZQ terms do
not affect the 3QC oscillations significantly over time-
scales up to 
3 ms, but reduces the transfer amplitudes
by 
25%.

Apart from differences in the amplitudes of the curves
in Fig. 12, there are no major qualitative discrepancies at
the excitation interval sexc = 1.58 ms employed experi-
mentally (indicated by dashed lines in Fig. 12), except
that the three-bond transfer f 3Q
a!d;d0 is negative for the cal-

culations incorporating 3Q terms only, whereas those
also including ZQ dipolar and J-coupling terms have
positive amplitudes. The latter case agrees qualitatively
with the experimental result of Fig. 11, which displays
a weak positive peak at the d resonance. However, both
simulated polarization transfers f 3Q

f!c of Figs. 12C and D
predict negative values throughout the range of sexc,
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whereas the corresponding experimental peak is posi-
tive. Similar differences are found between experiments
and simulations for the 3Q–1Q correlation experiment
presented below. RF inhomogeneity is attributed as
the main reason for these deviations.

The discrepancies between experimental and calcu-
lated results are reasons for concern. They preclude
extraction of structural information (dipolar couplings
and bond angles) from our current experiments com-
bined with AHT calculations, whereas numerically exact
simulations are not feasible with our computer resources
for the spin system size required to faithfully simulate
tyrosine. Unfortunately, confining the calculations of
six-spin fragments of the nine coupled 13C could poten-
tially introduce systematic errors in the calculated trans-
fer functions. Additionally, there are several other
experimental obstacles complicating a quantitative anal-
ysis. First, the assumption of equal spin polarizations at
the start of the recoupling interval is in general not valid
due to different cross-polarization efficiencies for distinct
13C sites, leading to unequal cross-peak intensities
(fp fi q(s) „ fq fi p(s)) in the correlation experiments
[46]. This must be accounted for by a careful analysis,
as must differences in relaxation of the spins during exci-
tation and reconversion of 3QC, in turn related to the
major experimental obstacle, namely to isolate the
recoupled 13C spins from surrounding protons. 13C–1H
couplings perturb the 3QC dynamics and leads in partic-
ular to severe signal losses [20].
Fig. 13. 2D 3Q–1Q correlation spectrum acquired on [U-13C, 15N]LL-tyrosine
those of Figs. 2 and 11, except that xr/2p = 7.2 kHz and distinct excitation a
srec = 0.83 ms (qrec = 2). The experimental conditions corresponded to using
slices at each of the seven 3QC frequencies present in x1.
9.2. 3Q–1Q correlation spectrum

Fig. 13 shows the 3Q–1Q correlation spectrum of tyro-
sine, together with slices taken through each of the seven
distinct triple-quantumcoherences. This correlation spec-
trum provides enhanced resolution along the x1 dimen-
sion and easier assessment of spin–spin connectivities
than the 1Q–1Q experiment. The amplitude of each peak
appearing in the slice of 3Q(pqr) represents the value of
the function f pqr

Z!j; where strong signals are only expected
if spin j belongs to the spin triplet pqr. Five of the seven tri-
ple-quantum coherences comprise three chemically
inequivalent nuclei with distinct isotropic chemical shifts,
manifested by three resolved peaks at the respective chem-
ical shift frequency in thex2 dimension.However, the two
triplets cdd 0 and fee 0 involve two chemically equivalent
nuclei, hence displaying only two peaks in the 3QF slice.

Fig. 14 presents numerically simulated transfer func-
tions for three distinct 3QC. By comparing the left and
right diagrams of each row, it may be concluded that
the simulations incorporating ZQ-terms and J-couplings
result in 
50% loss for each transfer process. The two
triple-quantum coherences 3Q(abc) and 3Q(def) involve
three distinct spins. The simulations displayed in Figs.
14A–D predict an evenly distributed polarization among
the three spins in the 3QF spectrum. This is in reason-
able agreement with the integrated experimental ampli-
tudes of Fig. 13. However, the total integrated

experimental intensity over the 3Q(abc)-slice relates to
with the pulse scheme of Fig. 1C and similar acquisition parameters to
nd reconversion intervals were employed: sexc = 1.67 ms (qexc = 4) and
ðR1873Þ3

1 with Rð55�Þ and fp = 0.31. The stack of 1D spectra represents



Fig. 14. Simulated transfers of total z-polarization through the following 3QC: (A and B) 3Q(abc); (C and D) 3Q(def); and (E and F) 3Q(ee 0f) for
three different six-spin fragments of the tyrosine molecule. The AHT simulations employed experimental parameters of Fig. 13 and couplings among
the marked spins (right part of figure). The simulations in (A, C, and E) assumed only the 3Q part of the second-order average Hamiltonian, whereas
those in (B, D, and F) resulted after also including the ZQ and J-coupling contributions. Calculations were mimicking the acquisition protocol of
[31,36], incorporating an incremented excitation interval, while keeping the reconversion interval fixed at srec = 0.83 ms. The dashed lines mark the
value sexc = 1.67 ms used in Fig. 13.
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that of 3Q(def) as 1:4.4, which agrees with neither of the
simulations, regardless if ZQ and J-coupling contribu-
tions are included or not.

Figs. 14E and F display the transfer functions involv-
ing 3Q(e e 0f). Although the simulated curves in F are sig-
nificantly damped relative those of E, both AHT
calculation predict that f ee0f

Z!e;e0 ¼ 2:0 � f ee0f
Z!f, i.e., that the

spectral amplitude at the e,e 0 chemical shift is twice that
of the f-site. This is in good agreement with the ratio of
the integrated experimental amplitudes of the f and e,e 0

peaks, estimated as 1.0:1.8.
10. Experimental and numerical methods

The experimental protocols (Fig. 1) were implemented
on powders of 99% [U-13C,15N]LL-alanine and
[U-13C,15N]LL-tyrosine at 4.7 T on a Varian/Chemagnet-
ics Infinity spectrometer. The alanine sample was isotopi-
cally 2H-labeled at the Ca (�90%) and Cb (�25%)
positions. The samples were restricted to the center 1/3
of 4 mm rotors to reduce RF inhomogeneity. All experi-
ments employed 13C nutation frequencies of �50 and
110 kHz during cross-polarization and pulses of the
ðR1873Þ3

1 sequence, respectively. During signal acquisi-
tion, high-power proton decoupling ðxH

nut=2p � 90 kHzÞ
was effected by CW-decoupling for alanine and TPPM
[35] for tyrosine. CW was applied during the evolution
interval t1 for both samples. With recycle delays of 5 s
(alanine) and 10 s (tyrosine), a 2D acquisition took typi-
cally 15 and 30 h for alanine and tyrosine, respectively.
Specific acquisition parameters are given for alanine in
the caption of Fig. 2, and for tyrosine in Figs. 11 and
13. A major experimental obstacle is to effect reasonably
efficient heteronuclear 1H–13C decoupling; this is well-
known to be problematic when simultaneously applying
13C recoupling pulses [29,31,41,53,54]. Additional infor-
mation about proton decoupling during application of
3Q-recoupling sequences is given in [20].

We employed the TPPI scheme [37] to obtain purely
absorptive 2D spectra with sign discrimination along
both spectral dimensions. For the 3QF 1Q–1Q experi-
ments, the phase of the cross-polarization pulse was
incremented for every consecutive t1-value ðt1 ¼ mDt1Þ
according to U1Q

TPPI ¼ p
2
m whereas for the 3Q–1Q corre-

lations the phase shift U3Q
TPPI ¼ p

6
m was added both to

the cross-polarization and 3QC excitation blocks. As ex-
plained in detail in Appendix A, a t1-dependent phase
shift of mDt1xr/3 should be added to the phase U3QF

in Eq. (5) to allow an unrestricted spectral width in
x1, i.e., an arbitrary t1-incrementation when using the
recoupling sequence ðR1873Þ3

1.
The analytical transfer functions were obtained using

Mathematica [55]. All numerical simulations started by
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constructing the second-order 3Q Hamiltonian of Eq.
(15), numerically diagonalizing it, and calculating the
relevant transfer function according to Eq. (16). We ver-
ified the equivalence between the analytical results from
Mathematica and the numerically calculated curves.
AHT is strictly only valid at completed cycles of
ðR1873Þ3

1, i.e., when sexc incremented in steps of 9sr. This
was used in all numerical calculations, except for those
of Figs. 12 and 14, which employed sampling at com-
pleted R1873 sequences. All simulations, except parts of
Figs. 5, 9, and 10, represent powder averages, typically
calculated over 538 ZCW orientations [56–58]. The sim-
ulations of tyrosine assumed dipolar couplings and Eu-
ler transformation angles calculated from the atomic
coordinates of [59].
11. Concluding remarks

In this article, we explored MQC excitation by a
three-spin 3Q dipolar Hamiltonian in poly-crystalline
powders comprising clusters of coupled spins-1/2 under
MAS conditions. These results are complementary to
previous investigations of MQC dynamics governed by
1Q and 2Q effective Hamiltonians [4–6,8,9,12].

We presented analytical expressions predicting the
buildup of total 3QC as function of excitation interval
in three and four-spin systems (initially prepared with
longitudinal polarization), as well as the distribution
of intensities among the individual spins in the 3QF
NMR spectrum. The buildup of 3QC in a three-spin sys-
tem was shown numerically to be dependent on the
molecular geometry, and should in ideal cases allow
for determining the intersection angle between two inter-
nuclear vectors. However, we have not verified this
experimentally. A spin triplet subject to a three-spin
3Q Hamiltonian evolves similarly to a spin-pair under
a two-spin 2Q Hamiltonian. The 3Q recoupling dynam-
ics in a four-spin system share many features with a
three-spin system subject to a 2Q Hamiltonian: this
may be verified by comparing the analytical 3QF expres-
sions of Section 6 with those in [50].

The most prominent feature of 3Q recoupling is the
highly efficient 3QC filtration delivered from powders:
the upper theoretical limit in three-spin systems amounts
to 
67%. This number is only slightly lower than the
maximal efficiency for 2QF in spin-pairs using a 2Q
recoupling sequence (
73%). Interestingly, spin configu-
rations also offering unusually high 3QF efficiencies are
tetrahedral and octahedral clusters, for which the pow-

der averaged 3QF efficiency may exceed 
55%, which
is only marginally lower than the theoretical values from
a single crystal. The optimal 3QF efficiency depends to
some extent on the spin system size ðN Þ and its geome-
try, and also on the orientational dependence of the 3Q
Hamiltonian terms of the pulse sequence employed, but
35–55% 3QF efficiency may ideally be expected in mod-
erately large spin clusters. These numbers are several
times higher than the theoretical efficiencies of previous
methods for 3QC excitation in rotating solids [50,51].

In ensembles of larger spin clusters, higher-order
MQC develop by the action of a 3Q Hamiltonian. We
considered two cases where all spins are prepared with
equal longitudinal or transverse polarizations. In the
former case, all coherence orders M being integral mul-
tiples of 3 are excited, except for the extreme orders
M ¼ �N if the cluster-size is an even multiple of three.
Similar restrictions apply for an ensemble of four-spin
clusters initially prepared with transverse magnetization:
4QC is not excited, and the spin system ensemble is
oscillating between 1QC and 2QC. On the other hand,
if a 3Q recoupling sequence is applied to systems involv-
ing more than four spins and prepared with transverse
polarization, all multiple-quantum orders will develop
(except for M = 0, ± 3, ± 6, . . .).

We also demonstrated two 2D NMR protocols
involving 3Q recoupling. They correlate either 1QC or
3QC, respectively, during t1 with 1QC during acquisi-
tion (t2). The 1Q–1Q 2D spectrum contains cross-peaks
manifesting correlations between coupled spins sepa-
rated by one or two bonds, whereas the 3Q–1Q protocol
separates the various 3QC from each spin triplet in the
sample. While experimental demonstrations on
[U-13C]LL-alanine and LL-tyrosine qualitatively established
all expected correlations from these two known struc-
tures, the experiments could not be quantitatively repro-
duced by the AHT simulations, and hence no structural
information is to be expected directly from the current
second-order 3Q recoupling sequences discussed in this
paper. An advantage with these 3Q correlation experi-
ments compared to similar experiments involving 2QC,
is indeed the ‘‘three-body’’ character of the trilinear
3Q average Hamiltonian: potentially geometric informa-
tion may be obtained about a spin triad through 3Q
recoupling.

There are two distinct problems involved in our cur-
rent experimental protocols, which need consideration
in future developments: (i) Heteronuclear decoupling
during application of 3Q recoupling sequences is cur-
rently insufficient, leading to signal losses and poten-
tially erroneous 2D spectral amplitudes. (ii) The
second problem is more fundamental in that the 3Q
phase-cycles discussed here do not provide a pure 3Q
average Hamiltonian, but also recouple second-order
ZQ dipolar terms. As discussed in [20], the ZQ terms
may be removed by another stage of supercycling, there-
by re-establishing all theoretical predictions of this
work, which assumed ‘‘pure 3Q recoupling.’’ However,
the supercycles are no longer c-encoded [60], limiting
the 3Q–1Q correlation experiment in that the t1-incre-
mentation must be in steps of the rotational period sr
to avoid spectral artefacts.
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In summary, we have demonstrated that polarization
transfer through 3QC is a promising candidate for
obtaining geometric information (such as inter-bond an-
gles), but due to shortcomings of the currently available
3Q recoupling pulse sequences, they cannot directly pro-
vide this information by experimentally recording 3QF
amplitudes as function of the excitation interval. Yet
the sequences deliver higher 3QF efficiencies than previ-
ous schemes, and should nevertheless be useful as 3QC
generators in any 3QC-based experiment. We believe
that one of the most useful applications for the 3Q
recoupling approach lies in experiments for measuring
multiple peptide torsion angles in [13C3]alanine residues
by combining the 2D 3Q–1Q correlation experiment
with the technique described in [17].
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Appendix A. Second-order recoupling in 2D experimental

protocols

Consider an arbitrary recoupling sequence. Each of
its first-order average Hamiltonian terms of interaction
K contributing to Eq. (13) is denoted H

K
lmkl and associ-

ated with a quartet of spatial and spin quantum num-
bers (l, m, k, l). To second-order AHT (Eq. (14)) a set
of ‘‘cross-terms’’ are recoupled, each corresponding to
a pair of quantum number quartets {(l2m2k2l2),
(l1m1k1l1)}, associated with the Hamiltonian

H
K2�K1

l2m2k2l2
l1m1k1l1

. The expressions of these Hamiltonians for sym-

metry-based pulse sequences are defined in [20,21,33].

To keep the notation in this Appendix consistent with
the main text and most of the literature, we denote the
evolution interval of a 2D NMR experiment by t1,
although we otherwise carefully distinguish between
time-points, denoted t, and time intervals, denoted s. It
is desirable to obtain purely absorptive peak-shapes com-
bined with arbitrary spectral windows in both dimensions
of the spectrum. However, these goals are often not
simultaneously achievable in powdered solids when
incorporating recoupling sequences into 2D protocols,
such as that of Fig. 1C. In general, the 2D spectral ampli-
tudes will be modulated because the starting point of the
reconversion sequence is shifted (i.e., the rotor position)
as t1 is incremented, which leads to spinning sidebands
(that cannot be suppressed by fast spinning) in the x1
dimension unless Dt1 = sr [3]. This rotor-encoding of the
2D amplitudes [21] may be avoided if the recoupling
sequence is c-encoded, meaning that each spin compo-
nent l of the Hamiltonian is only associated with one spa-
tial component m [21,60]. Hence, c-encoded sequences
allow using arbitrary incrementation in t1, implying that
Dt1 may be chosen independently of the spinning
frequency.

In the following, we first recapitulate the strategy pre-
sented earlier in [21,31,61] to circumvent rotor-encoding
for first-order recoupling sequences. Next, these argu-
ments are extended to second-order recoupling se-
quences. We discuss the restrictions imposed on the
second-order average Hamiltonian of a general symme-
try-based recoupling sequence (not necessarily effecting
3Q recoupling) when it is incorporated into a 2D corre-
lation experiment as shown in Fig. 1C. Note that none
of these restrictions apply to the 1Q–1Q correlation
experiment of Fig. 1B as the MQC excitation and recon-
version occurs after the t1 interval.

A.1. First-order recoupling sequences

Consider a rotor-synchronized CN m
n or RN m

n pulse se-
quence, having an overall RF phase U0 and starting at
time point t0. Assume that this sequence recouples a
term H

K
lmkl with quantum numbers (l, m, k, l) to first-or-

der average Hamiltonian theory. The term depends on
U0 and t0 as follows:

H
K
lmklðt0;U0Þ ¼ H

K
lmklð0; 0Þ expf�iðlU0 � mxrt0Þg:

ðA:1Þ
If the ratio m/l is equal for all recoupled terms in
the first-order average Hamiltonian, and additionally
l „ 0, their dependence on the starting time point t0 of
the pulse sequence can be canceled by choosing the over-
all RF phase U0 according to [21,31,61]

U0 ¼ m
l
xrt0: ðA:2Þ

By definition, all c-encoded pulse sequences fulfill this
condition.

Next, assume the pulse sequence (Fig. 1C) involves
excitation and reconversion of multiple quantum coher-
ences. The excitation sequence starts at time point t0exc
and lasts for a time interval sexc, followed by an evolu-
tion interval t1. The subsequent reconversion sequence
starts at time point t0rec ¼ t0exc þ sexc þ t1. Then the RF
phase Urec of the reconversion sequence should be ad-
justed according to Eq. (A.2)

Urec ¼ U0
rec þ

m
l
xrðt0rec � t0excÞ ¼ U0

rec þ
m
l
xrðsexc þ t1Þ;

ðA:3Þ
where U0

rec is an additional phase shift of the reconver-
sion sequence. If sexc is equal to an integer number of
rotational periods, Eq. (A.3) is simplified to
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Urecðt1Þ ¼ U0
rec þ

m
l
xrt1: ðA:4Þ

Provided that the reconversion block implements this t1-
dependent phase-shift in a 2D experiment, an arbitrary
incrementation in t1 may be used.

A.2. Second-order recoupling sequences

The previous discussion may readily be extended to
second-order recoupling schemes. Again, consider a
CN m

n or RN m
n pulse scheme, having an overall RF phase

U0 and starting at time point t0. Assume that it recouples

a term H
K2�K1

l2m2k2l2
l1m1k1l1

with quantum numbers {(l2m2 k2l2),

(l1m1k1l1)} to second-order average Hamiltonian the-
ory. This term depends in the following way on U0

and t0:

H
K2�K1

l2m2k2l2
l1m1k1l1

ðt0;U0Þ¼H
K2�K1

l2m2k2l2
l1m1k1l1

ð0;0Þexpf�iððl2þl1ÞU0

�ðm2þm1Þxrt0Þg: ðA:5Þ
A second-order recoupling sequence is c-encoded if the
ratio (m2 + m1)/(l2 + l1) is equal for all recoupled sec-
ond-order terms. if l2 + l1 „ 0, the dependence on the
starting time point t0 may then be removed, by choosing
the overall rf phase U0 according to the phase-time rela-
tionship. If l2 + l1 „ 0, the dependence on the starting
time point t0 may then be removed, by choosing the
overall RF phase U0 according to the phase-time
relationship

U0 ¼ m2 þ m1

l2 þ l1

xrt0: ðA:6Þ

If we consider the pulse scheme of Fig. 1C, incorporat-
ing a c-encoded recoupling sequence and implemented
with excitation and reconversion intervals equal to an
integer number of rotational periods, the RF phase Urec

of the reconversion block has to be adjusted as

Urecðt1Þ ¼ U0
rec þ

m2 þ m1

l2 þ l1

xrt1 ðA:7Þ

analogously to Eq. (A.4).
However, c-encoded second-order recoupling se-

quences are in general more difficult to engineer than
their first-order counterparts, due to the larger number
of second-order terms contributing to the second-order
average Hamiltonian. We therefore define that a pulse
sequence is c-encoded with resepect to a certain spin or-
der jl2 + l1j if the ratio (m2 + m1)/l2 + l1 is the same
for all terms order jl2+l1j. For these terms, Eqs. (A.5)
and (A.7) are still valid. The sequence ðR1873Þ3

1 is c-en-
coded with respect to spin order 3, as all its recoupled
3Q terms (given in Table III of Ref. [20]) fulfill
(m2 + m1)/(l2 + l1) = 1/3, explaining the choice of t1-
dependent phase incrementation 1

3
Dt1xr in our

experiments.
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